If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(7-x)=8-(2x^2-8x-7)
We move all terms to the left:
2(7-x)-(8-(2x^2-8x-7))=0
We add all the numbers together, and all the variables
2(-1x+7)-(8-(2x^2-8x-7))=0
We multiply parentheses
-2x-(8-(2x^2-8x-7))+14=0
We calculate terms in parentheses: -(8-(2x^2-8x-7)), so:We get rid of parentheses
8-(2x^2-8x-7)
determiningTheFunctionDomain -(2x^2-8x-7)+8
We get rid of parentheses
-2x^2+8x+7+8
We add all the numbers together, and all the variables
-2x^2+8x+15
Back to the equation:
-(-2x^2+8x+15)
2x^2-8x-2x-15+14=0
We add all the numbers together, and all the variables
2x^2-10x-1=0
a = 2; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·2·(-1)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{3}}{2*2}=\frac{10-6\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{3}}{2*2}=\frac{10+6\sqrt{3}}{4} $
| 0.12x=4.44 | | 8(x+3)+6=-2 | | 7g-10=10g+2+g | | 7+1/2(2x−18)+4=28 | | 8x(x+3)+6=-2 | | 7+21(2x−18)+4=28 | | -3x+2/3=x=-1/4 | | 3x+5+2x+6=3x+21 | | 5(x+5)+9=-1 | | 4(2+3n)-4=52 | | 4(x+2)+7=-5 | | 3(3x-4)=5x+8 | | -7πh=98 | | -8w+5(w+7)=23 | | 2n*n+10n=2n*n | | 3(x+2)+8=-4 | | u–3+3=–6 | | (x+2)/5=7/5 | | -2x-3(1+2x)=-59 | | 5(q+1)=15 | | 7x2+9x-88=0 | | 5(8b-5)=-145 | | -2(6n+2)=92 | | -5x-2(1+5x)=-47 | | -400=-1.6s | | 4b+7+5b=-11 | | (301)x=(120)8 | | 3x-10=4x+2=3x+2 | | x+0.7=0.5(x+7) | | -4x-2(1+4x)=-62 | | x²-9=(x+3)(x-3) | | 15-0.18y=7.44 |